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THE STEREOSELECTIVE SYNTHESIS OF L-TAGATOSE
-—— AN APPLICATION OF Zn(II) MEDIATED HIGHLY STEREOSELECTIVE ADDITION
OF 2-FURYLLITHIUM TO POLYOXYGENATED ALDEHYDE b

Teruaki MUKAIYAMA, Yoichi YUKI, and Keisuke SUZUKI
Department of Chemistry, Faculty of Science
The University of Tokyo, Hongo, Bunkyo-ku, Tokvo 113

In the presence of InBr,, the addition of 2-furyllithium to
4-0-benzyl-2,3-0-isopropylidene-L-threose proceeded in a highly
stereoselective manner to afford the anti-adduct, which was further
converted to L-tagatose.

In the previous paper,z) we reported the highly stereoselective addition of
2-furyllithium to 2,3-0O-isopropylidene glyceraldehyde in the presence of zinc(II)
halides, where the adduct was converted to D-ribulose in three steps. The observed
high stereoselectivity is reasonably explained by the enhancement of the Felkin's
selectivitys) by virtue of the chelation effect of Zn(I) .

In this communication, we wish to describe a convenient route to the synthesis
of L-tagatose (1),4) the antipode of the naturally occurring ketose of physiologi-
cal and immunological interests,s) based on the aforementioned highly stereoselec-
tive addition. When 2-furyllithium in THF was treated at -78°C with 4-0O-benzyl-
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2,3-0-isopropylidene-L-threose (g), a new building block for the sugar synthesis,6)
the corresponding adducts 3 were obtained in 97% yield in a virtually non-
stereoselective manner (anti:syn =63:37).7) On the other hand, in the presence of
an equimolar amount of ZnBrZ,S) the addition proceeded in a highly stereoselective
manner to afford almost pure anti-ég) (anti:syn =98:2)7) in 97% yield.

Next, the synthesis of L-tagatose starting from the anti-adduct was investi-
gated (Scheme I). The adduct 3 was treated with Br2 (1 equiv.) in MeOH at -42°C
to give the dihydrofuran derivative 4, 10) which in turn was converted to the bi-
cyclic compound 510) by the treatment with a catalytic amount of H SO4 in 2,2-
dimethoxypropane at room temperature. The spiro-ketal 5 was then ozonized (MeOH,
-78°C), reductively worked up with NaBH4, and acetalized (acetone, H SO4) to give
the diacetonide 6. 11)
10% Pd-C, r.t., 12 hr) to give 1,2;3,4-di-O-isopropylidene-L-tagatose (7) as white

The acetonide 6 was quantitatively debenzylated (1 atm HZ’

crystal, which was identical with an authentic specimen of the D-series in all

respects except for the sign of the optical rotation.lz) The diacetonide 7, thus



1170 Chemistry Letters, 1982

MeO
B w Br2 IMeOH J\)<=>w0Me B
nC)/’\]' BnO Me

/ OMe BnO
anti - 3 4., 83 % 50 5 56 %
2) NaBH, BnO o Pd-C HO 0 -1 .
3) H*/acetone ) 85°%
§ 37 o Z unlnt. (SCheme I)

obtained was further converted to 1 under the same condition reported for D-7 '~ in
85% yield. 13) Thus, L-tagatose, the antipode of the naturally occurring ketose,
was successfully synthesized from the adduct 3 in five steps.
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8) The reaction was carried out at 0°C. Concerning the detailed experimental
procedure, see ref. 2).

9) NMR and IR data for the anti and syn adducts are presented: Anti-adduct NMR
(CDC13) 6=1.3 (s, 6H), 3.1-4.5 (m, S5H), 4.35 (s, 2H), 4.7 (d, J=3 Hz, 1H), 6.2
(s, 2H), and 7.1-7.3 (m, 6H). IR (neat) 3430, 860, 740, and 700 cm~!. Syn-
adduct NMR (CDCl;) 6=1.35 (s, 3H), 1.40 (s, 3H), 3.0 (broad, 1H), 3.1-3.6 (m,
2H), 4.0-4.3 (m, 2H), 4.5 (s, 2H), 4.5-4.9 (m, 1H), 6.3 (s, 2H), and 7.1-7.4
(m, 6H). IR (neat) 3430, 1080, 865, 740, and 700 cm~'.

10) The compound exhibited satisfactory spectral properties.

11) NMR (CCl,) 6=1.2 (s, 3H), 1.3 (s, 6H), 1.4 (s, 3H), 3.4-3.8 (m, 2H), 3.8-4.1
(m, 1H), 3.85 (d, J=6Hz, 1H), 4.15 (d, J=6Hz, 1H), 4.35 (d, J=3 Hz, 1H), 4.45
(s, 2H), 4.65 (dd, J,=3 Hz, J,=3.5 Hz, 1H), and 7.1-7.3 (m, 5H); IR (neat)
2980, 2930, 1390, 1370, 855, 735, and 695 cm~?!; Found: m/e 350.1720. Calcd for
C19H26052 M, 350.1727.

12) M.p. 64-65°C (pentane); [a]z“ -62° (c 1.1, CHC1l,); IR (CH:Cl,) 3600, 2930, 1370,
1210, 1070 and 860 cm™1!; TPNMR (CCl,) &= 1.25 (s, 3H), 1.35 (s, SH), 1.4 (s,
6H), 2.1 (broad, 1H), 3.5-4.1 (m, 3H), 3.9 (4, J=6 Hz, 1H), 4.15 (d, J=6 Hz,
1H), 4.5 (d, J=4 Hz, 1H), and 4.75 (dd, J,=4 Hz, J,=2 Hz, 1H); !3C NMR (CDC13)
§=24.71, 25.95, 26.44, 69.22, 78.97, 80.48, 85.42, 111.69, 111. 80, and 112.88;
MS (70 eV), Found: m/e 245.1008. Calcd for C;iH;706: M- CH3 245,1023.

An authentic sample of D-7 was prepared from commercial D-tagatose according
to the method stated in ref. 4), where the optical rotation of D-7 was re-
ported to be [a]D +64° (c 0.80, CHC1,;).

13) M.p. 130-131°C (EtOH) ; [a] 2 +3 1° (c 0.75, H,0) (constant value).
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